On the asymptotic number of non-equivalent binary linear codes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The asymptotic number of binary codes and binary matroids

The asymptotic number of nonequivalent binary n-codes is determined. This is also the asymptotic number of nonisomorphic binary n-matroids.

متن کامل

On the Number of Non-Equivalent Linear Transducers

The notion of linear finite transducer (LFT) plays a crucial role in a family of cryptosystems introduced in the 80’s and 90’s. However, as far as we know, no study was ever conducted to count and enumerate these transducers, which is essential to verify if the size of the key space, of the aforementioned systems, is large enough to prevent a exhaustive search attack. In this paper, we determin...

متن کامل

on the equivalence of constructed-response and multiple-choice : stem-equivalent, stem non-equivalent but content equivalent, and stem and content non-equivalent items in reading comprehension using multifaceted rasch

the present study investigated construct equivalence of multiple choice (mc) and constructed response (cr) item types across stem and content equivalent mc and cr items (item type ‘a’), non-stem-equivalent but content equivalent mc and cr items (item type ‘b’), and non-stem and non-content equivalent mc and cr items (item type ‘c’). one hundred seventy english-major undergraduates completed mc ...

Asymptotic Bound on Binary Self-Orthogonal Codes

We present two constructions for binary selforthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the information rate R = 1/2, by our constructive lower bound, the relative minimum distance δ ≈ 0.0595 (for GV bound, δ ≈ 0.110). Moreover, we have proved that the binary selforthogonal codes asymptotically achieve the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2007

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2005.09.002